附 1:

RTU 直流电流模拟量输入值检测 测量过程不确定度评定报告

1、测量过程

- 1.1 测量方法: 依据 GB/T 34039-2017 远程终端单元(RTU)技术规范。
- 1.2 环境条件:环境温度: -20~50℃、湿度: ≤90%。
- 1.3 检测设备: 信号校准仪, (0-110) mA, 0.01%。
- 1.4 被测对象: 远程终端单元(RTU)
- 1.5 测量过程: 远程终端单元(RTU)放置在检测平台上,打通信号源和信号校准仪进行测
- 量,此时信号校准仪显示被测量数据。

式中: δ,---被测 RTU 的直流电流模拟量输入读数

△I----信号校准仪模拟量读数值

3. 输入量的标准不确定度评定

输入量的不确定度来源主要是:测量重复性引起的不确定度 u_1 ;测量设备引入的标准不确定度 u_2 。

3.1 输入量 I 的不确定度 u_1 的评定

输入量 I 的不确定度 u_1 的来源主要是测量重复性引起的标准不确定度,可通过连续测量 10 次,采用 A 类方法进行评定。

对直流电流模拟量输入进行测量,得到以下数据:

序号	1	2	3	4	5
读数值 mA	10.04	10.03	10.02	10.05	10.02
序号	6	7	8	9	10
读数值 mA	10.04	10.03	10.02	10.05	10.02

各测量值的平均值: $\overline{x} = \frac{\sum_{k=1}^{n} x_k}{n} = 10.032 \text{mA}$

单个测量值的实验标准差:
$$s = \sqrt{\frac{\sum_{i=1}^{10} (Li - \overline{L})^2}{n-1}} = 0.012 \text{mA}$$

被测量估计值(\overline{I})标准不确定度分量 u_1 : (\overline{I} 为 3 组数据的平均值,取=3)

标准不确定度分量:
$$u_1 = \frac{S}{\sqrt{n}} = 0.007 \text{ mA}$$

3.2、测量设备引起的标准不确定度 u2 的评定

查信号校准仪的说明书,最大引用误差为 0.01%即: ± 0.011 mA,取半宽 a=0.011mA,服从均匀分布,k 取 $\sqrt{3}$,则

$$u_2 = \frac{0.011}{\sqrt{3}} = 0.0064 mA$$

4、标准不确定度一览表

标准不确定度分量 u _c	不确定度来源	不确定度值 u (x _i)
标准不确定度 u ₁	测量重复性所引入的不确定度	0.007mA
标准不确定度 u ₂	测量设备引入的不确定度	0.0064mA

5、合成标准不确定度的计算

合成标准不确定度可按下式得到:

$$u_C = \sqrt{u_1^2 + u_2^2} = 0.0095$$
mA

6、扩展不确定度的评定

取包含因子 k=2,置信概率 95%, 得

 $U=k \cdot u_c = 2 \times 0.0095 \text{mA} = 0.019 \text{mA}$

Urel=0.019/110×100%=0.0172%=0.02%

评审人: 张超

审核人: 孔贝贝